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What you can do



What machines do
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What machines do

e.g.

' temperature, humidity, the amount of cloud
-> precipitation

population, the number of shops, the number of new residents
-> housing price
50 4

—— featurel
feature2

— feature3

— target
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What machines do

e.g.,
. © temperature, humidity, the amount of cloud
-> precipitation
population, the number of shops, the number of new residents
-> housing price

—— featurel
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—— feature3

— target

| | It is more difficult
| to find a function
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Machines can find the function

Test set
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feature2
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Machines can find the function
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Machines can find the function

Test set

— featurel
feature2
—— feature3

Linear regression

— ftrue
—— prediction

Test set
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— target

Support Vector Machine

— ftrue
—— prediction
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Machines can find the function

Test set

Long Short Term Memory Keras

— featurel
feature2

—— feature3
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Machine learning can be used to analyze data
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Recurrent Neural Network



Recurrent Neural Networks (RNNs)

* Recurrent Neural Networks (RNNs) is designed for time series data.

* The networks have loops so that they consider time dependencies between elements in the time
series data.



Recurrent Neural Networks (RNNs)

Conventional Neural Networks:

Recurrent Neural Networks:

hell —

f'




Recurrent Neural Networks (RNNs)

St — f(Wxt + USt_]_ + b)

Vanilla

—_— RNN — S

Cell




Recurrent Neural Networks (RNNs)

What if words are so long?
e.g., Pneumonoultramicroscopicsilicovolcanoconiosis: lung disease caused by micro dust
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Long Short Term Memory (LSTM)

C; ft = o(Wex + Uphy_q + by)
iy = o(Wixy + Uihy_q + b;)
o = o(Wox +U,ht_q + b,)
a, = tanh(Wyx; + Ujhq—1 + b,)




Long Short Term Memory (LSTM)

Cy

fe = o(Wsrxy + Ughi_q + by)

iy = o(Wixy + Uihy_q + b;)

o = o(Wox +U,ht_q + b,)

a, = tanh(Wyx; + Ujhq—1 + b,)

Ce = a; Ot + ftOCt_4
ht — tanh(Ct)GOt



Long Short Term Memory (LSTM)

e

Ct

hy

fe = o(Wsrxy + Ughi_q + by)

iy = o(Wixy + Uihy_q + b;)

o = o(Wox +U,ht_q + b,)

a, = tanh(Wyx; + Ujhq—1 + b,)

Ce = a; Ot + ftOCt_4
ht — tanh(Ct)GOt

0<o(x)<1, —-1<tanh(x) <1

What if g is used?



Long Short Term Memory (LSTM)

Do not have the previous
state information

t = O-(fot + Ufht—l + O
it = O'(Wl'xt + Uiht—l + bl)

Ce = a; Ot + ftOCt_4
ht — tanh(Ct)GOt




LSTM with Peephole Connection

C; fo = o(Wexy + Ughp—q + Ce_1Pr + by)
ir =0c(W;x; + Uhy_q + Ci_1P; + b;)
o =0cWyx¢ + Uyhi_q + C:P, + by)
a, = tanh(Wyx; + Ujhq—1 + b,)

Ce = a; Ot + ftOCt_4
ht — tanh(Ct)GOt




Gated Recurrent Unit (GRU)

Ci—1 Ct
ze = o(Wyxy + UyCr_q + by)
1t = o(Wext + U.Ceoq + by)

a, = tanh(Wyx; + U, (r:©OCi—1) + by)

C: = (1 —2z)0a; +z:0C:_4




Gated Recurrent Unit (GRU)

Ci—1 Ct
ze = o(Wyxy + UyCr_q + by)
1t = o(Wext + U.Ceoq + by)

a, = tanh(Wyx; + U, (r:©OCi—1) + by)

C: = (1 —2z)0a; +z:0C:_4

Ct — itQClt ~+ ftGCt—l in LSTM




Hierarchical Architecture



Stage-wise Training

Image classification

Give subsampling image step by step
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Stage-wise Training

* Image classification

* Give subsampling image step by step
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Hierarchical Deep Convolution Neural Network

* Image classification

* Give subsampling image step by step

Coarse Component
independent layers

v

\ 4

Fine Component 1
independent layers

v

Fine Component 2
Shared independent layers

V Vv

Images Layers

Probabilistic averaging layer

Fine Component n
independent layers




Hierarchical Deep Convolution Neural Network

* Image classification

* Give subsampling image step by step

Building
independent layers

v

\ 4

Floor 1
independent layers

v

Floor 2
Shared independent layers

V Vv

Images Layers

Probabilistic averaging layer

Floor n
independent layers




Hierarchical Auxiliary Learning

Fully connected
layer

(x

Auxiliary score
1 length of vector

Auxiliary Block

The last
Residual block
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Output: [




Hierarchical Auxiliary Learning

Transportation

Fully connected
layer

(x

Auxiliary score
1 length of vector
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The last
Residual block

;
1

I Residual block

Sum
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Hierarchical Auxiliary Learning

Building A

Fully connected
layer
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Dataset Class

MNIST, SVHN 0,1,2,3,4,5,6,7,8,9

CIFAR-10 Airplane, car, bird, cat, deep, dog, frog, horse, ship, truck

Dataset Case Semantics Superclass

MNIST Casel =5 0:{5,6,7,8,9},1:{0,1,2,3, 4}

SVHN Case2 Mod?2 0:{1,3,5,7,9},1:{0, 2, 4, 6, 8}
Case3 Prime 0:{2, 3,5, 7}, 1:{0, 1, 4, 6, 8, 9}
Cased Circle/ curve/ straight line 0:{0, 6, 8, 9}, 1:{2, 3, 5}, 2:{1, 4, 7}

CIFAR-10 Casel None 0:{5, 6, 7, 8,9}, 1:{0, 1,2 ,3, 4}
Case2 None 0:{1, 3,5, 7,9}, 1:{0, 2, 4, 6, 8}
Case3 Transportation/ animal 0:{2, 3, 4,,5,6, 7}, 1:{0, 1, 8, 9}
Case4d Car/ small animal/ big animal/ craft/ others 0:{1, 9}, 1:{3, 5}, 2:{4, 7}, 3:{0, 8}, 4:{2, 6}
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MNIST baseline Casel Case2 Case3 Cased
Error 0.93 0.43%0.03 0.73+0.06 0.70+0.05 0.69+0.00
SVHN Baseline Casel Case2 Case3 Cased
Error 4.05 2.53+0.06 2.64+0.11 2.661+0.07 2.861+0.07
CIFAR-10 baseline Casel Case2 Case3 Case4d
Error 6.81 3.301+0.06 5.30+0.14 6.46+0.08 5.134+0.09

05| SRR gy oo ks

25 50 75 100 125

CIFAR-10-Casel

0.0

25

50

75

CIFAR-10-Case?2

0 25 50

75

100

125

CIFAR-10-Case3

25 50 75 100 125

CIFAR-10-Case4

4.0

3.5

3.0

2.5

2.0

15

1.0

0.5

0.0






