

SURF 2019

Jaehoon Cha
Electrical and Electronics Engineering

Content

What you can do

Recurrent Neural Networks

Hierarchical Neural Network Architecture

What you can do

e.g.,

- temperature, humidity, the amount of cloud
 - -> precipitation population, the number of shops, the number of new residents

-> housing price

What is a f here?

target = f(feature1, feature2, feature3)

- temperature, humidity, the amount of cloud
- -> precipitation population, the number of shops, the number of new residents -> housing price

f()feature1, feature2, feature3)

It is more difficult to find a function in real life

Machine learning can be used to analyze data

Recurrent Neural Network

- Recurrent Neural Networks (RNNs) is designed for time series data.
- The networks have loops so that they consider time dependencies between elements in the time series data.

Conventional Neural Networks:

hell
$$\longrightarrow$$
 f \longrightarrow o

Recurrent Neural Networks:

$$s_t = f(Wx_t + Us_{t-1} + b)$$

What if words are so long?

e.g., Pneumonoultramicroscopicsilicovolcanoconiosis: lung disease caused by micro dust

$$f_{t} = \sigma(W_{f}x_{t} + U_{f}h_{t-1} + b_{f})$$

$$i_{t} = \sigma(W_{i}x_{t} + U_{i}h_{t-1} + b_{i})$$

$$o_{t} = \sigma(W_{o}x_{t} + U_{o}h_{t-1} + b_{o})$$

$$a_{t} = tanh(W_{o}x_{t} + U_{o}h_{t-1} + b_{o})$$

$$f_{t} = \sigma(W_{f}x_{t} + U_{f}h_{t-1} + b_{f})$$

$$i_{t} = \sigma(W_{i}x_{t} + U_{i}h_{t-1} + b_{i})$$

$$o_{t} = \sigma(W_{o}x_{t} + U_{o}h_{t-1} + b_{o})$$

$$a_{t} = tanh(W_{a}x_{t} + U_{a}h_{t-1} + b_{a})$$

$$C_t = a_t \odot i_t + f_t \odot C_{t-1}$$
$$h_t = \tanh(C_t) \odot o_t$$

Do not have the previous state information

$$f_{t} = \sigma(W_{f}x_{t} + U_{f}h_{t-1} + b_{f})$$

$$i_{t} = \sigma(W_{i}x_{t} + U_{i}h_{t-1} + b_{i})$$

$$o_{t} = \sigma(W_{o}x_{t} + U_{o}h_{t-1} + b_{o})$$

$$a_{t} = tanh(W_{a}x_{t} + U_{a}h_{t-1} + b_{a})$$

$$C_t = a_t \odot i_t + f_t \odot C_{t-1}$$
$$h_t = \tanh(C_t) \odot o_t$$

LSTM with Peephole Connection

$$f_{t} = \sigma(W_{f}x_{t} + U_{f}h_{t-1} + C_{t-1}P_{f} + b_{f})$$

$$i_{t} = \sigma(W_{i}x_{t} + U_{i}h_{t-1} + C_{t-1}P_{i} + b_{i})$$

$$o_{t} = \sigma(W_{o}x_{t} + U_{o}h_{t-1} + C_{t}P_{o} + b_{o})$$

$$a_{t} = tanh(W_{a}x_{t} + U_{a}h_{t-1} + b_{a})$$

$$C_t = a_t \odot i_t + f_t \odot C_{t-1}$$
$$h_t = \tanh(C_t) \odot o_t$$

Gated Recurrent Unit (GRU)

$$z_{t} = \sigma(W_{z}x_{t} + U_{z}C_{t-1} + b_{z})$$

$$r_{t} = \sigma(W_{r}x_{t} + U_{r}C_{t-1} + b_{r})$$

$$a_{t} = tanh(W_{a}x_{t} + U_{a}(r_{t} \odot C_{t-1}) + b_{a})$$

$$C_t = (1 - z_t) \odot a_t + z_t \odot C_{t-1}$$

Gated Recurrent Unit (GRU)

$$z_{t} = \sigma(W_{z}x_{t} + U_{z}C_{t-1} + b_{z})$$

$$r_{t} = \sigma(W_{r}x_{t} + U_{r}C_{t-1} + b_{r})$$

$$a_{t} = tanh(W_{a}x_{t} + U_{a}(r_{t} \odot C_{t-1}) + b_{a})$$

$$C_t = (1 - z_t) \odot a_t + z_t \odot C_{t-1}$$

$$C_t = i_t \odot a_t + f_t \odot C_{t-1} \text{ in LSTM}$$

Hierarchical Architecture

Stage-wise Training

- Image classification
- Give subsampling image step by step

Stage-wise Training

- Image classification
- Give subsampling image step by step

Hierarchical Deep Convolution Neural Network

- Image classification
- Give subsampling image step by step

Hierarchical Deep Convolution Neural Network

- Image classification
- Give subsampling image step by step

Hierarchical Auxiliary Learning

Dataset	Class	
MNIST, SVHN	0, 1, 2, 3, 4, 5, 6, 7, 8, 9	
CIFAR-10	Airplane, car, bird, cat, deep, dog, frog, horse, ship, truck	

Dataset	Case	Semantics	Superclass	
MNIST	Case1	≥ 5	0:{5, 6, 7, 8, 9}, 1:{0, 1, 2, 3, 4}	
SVHN	Case2	Mod2	0:{1, 3, 5, 7, 9}, 1:{0, 2, 4, 6, 8}	
	Case3	Prime	0:{2, 3, 5, 7}, 1:{0, 1, 4, 6, 8, 9}	
	Case4	Circle/ curve/ straight line	0:{0, 6, 8, 9}, 1:{2, 3, 5}, 2:{1, 4, 7}	
CIFAR-10	Case1	None	0:{5, 6, 7, 8, 9}, 1:{0, 1, 2, 3, 4}	
	Case2	None	0:{1, 3, 5, 7, 9}, 1:{0, 2, 4, 6, 8}	
	Case3	Transportation/ animal	0:{2, 3, 4, ,5, 6, 7}, 1:{0, 1, 8, 9}	
	Case4	Car/ small animal/ big animal/ craft/ others	0:{1, 9}, 1:{3, 5}, 2:{4, 7}, 3:{0, 8}, 4:{2, 6}	

MNIST	baseline	Case1	Case2	Case3	Case4
Error	0.93	0.43±0.03	0.73±0.06	0.70±0.05	0.69±0.00
SVHN	Baseline	Case1	Case2	Case3	Case4
Error	4.05	2.53 <u>±</u> 0.06	2.64 <u>±</u> 0.11	2.66 <u>±</u> 0.07	2.86 <u>+</u> 0.07
CIFAR-10	baseline	Case1	Case2	Case3	Case4
Error	6.81	3.30±0.06	5.30±0.14	6.46±0.08	5.13 <u>+</u> 0.09

Thank you

